skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reiss, Christian S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The northwestern Antarctic Peninsula is an important spawning, recruitment, and overwintering ground for Antarctic krill. The region is warming rapidly, and the current impacts of climate and environmental variability on the reproductive cycle of krill remain unclear. Here, we examine the reproductive stage of female krill in the austral winter from 2012 to 2016 in relation to climate and environmental data to assess what factors influence the timing of reproductive development. We observed significant interannual variability in the degree of maturation in female krill, ranging from 48% of female krill measured at a station in 2016 to a maximum of 94% of female krill measured at a station in 2014. On average, across all five years, three-quarters of the female krill sampled were in the stage known as previtellogenesis, the point at which the onset of sexual maturity begins. The preceding spring, summer, and autumn Southern Annular Mode and the Multivariate El NiƱo Index explained most of the variance in the data and indicated a strong, preconditioning storm-related effect on environmental conditions leading up to winter, affecting krill maturation status at the end of the winter season. Results from our study can be used to improve krill population models that are necessary for the management of the krill fishery and for conservation at the northwestern Antarctic Peninsula. 
    more » « less
  2. Synopsis Antarctic krill (Euphausia superba) larval production and overwinter survival drive recruitment variability, which in turn determines abundance trends. The Antarctic Peninsula has been described as a recruitment hot spot and as a potentially important source region for larval and juvenile krill dispersal. However, there has been no analysis to spatially resolve regional-scale krill population dynamics across life stages. We assessed spatiotemporal patterns in krill demography using two decades of austral summer data collected along the North and West Antarctic Peninsula since 1993. We identified persistent spatial segregation in the summer distribution of euphausiid larvae (E. superba plus other species), which were concentrated in oceanic waters along the continental slope, and E. superba recruits, which were concentrated in shelf and coastal waters. Mature females of E. superba were more abundant over the continental shelf than the slope or coast. Euphausiid larval abundance was relatively localized and weakly correlated between the North and West Antarctic Peninsula, while E. superba recruitment was generally synchronized throughout the entire region. Euphausiid larval abundance along the West Antarctic Peninsula slope explained E. superba recruitment in shelf and coastal waters the next year. Given the localized nature of krill productivity, it is critical to evaluate the connectivity between upstream and downstream areas of the Antarctic Peninsula and beyond. Krill fishery catch distributions and population projections in the context of a changing climate should account for ontogenetic habitat partitioning, regional population connectivity, and highly variable recruitment. 
    more » « less